预先完成的操作涉及一个复杂且计算密集的优化过程,以确定发电机的承诺时间表和调度。优化过程是一个混合企业线性程序(MILP),也称为安全受限的单位承诺(SCUC)。独立的系统操作员(ISO)每天运行SCUC,并需要最先进的算法来加快流程。可以利用历史信息中的现有模式来减少SCUC模型,这可以节省大量时间。在本文中,研究了基于机器学习(ML)的分类方法,即逻辑回归,神经网络,随机森林和K-Nearest邻居,以减少SCUC模型。然后,使用可行性层(FL)和后处理技术来帮助ML,以确保高质量的解决方案。提出的方法在多个测试系统上进行了验证,即IEEE 24总线系统,IEEE-73总线系统,IEEE 118总线系统,500个总线系统和波兰2383-BUS系统。此外,使用可再生生成的改良IEEE 24总线系统,证明了随机SCUC(SSCUC)的模型降低。仿真结果证明了高训练的准确性,以确定承诺时间表,而FL和后处理确保ML预测不会导致溶液质量损失最小的可行解决方案。
translated by 谷歌翻译
可靠,高分辨率气候和天气数据的可用性对于为气候适应和缓解的长期决策提供了重要的意见,并指导对极端事件的快速响应。预测模型受到计算成本的限制,因此通常以粗空间分辨率预测数量。统计降尺度可以提供高采样低分辨率数据的有效方法。在这个领域,经常使用计算机视觉中超分辨率域中的方法成功地应用了深度学习。尽管经常取得令人信服的结果,但这种模型在预测物理变量时通常会违反保护法。为了节省重要的物理量,我们开发的方法可以通过深层缩减模型来确保物理约束,同时还根据传统指标提高其性能。我们介绍了约束网络的两种方法:添加到神经网络末尾的重新归一化层,并连续的方法随着增加的采样因子的增加而扩展。我们使用ERE5重新分析数据显示了我们在不同流行架构和更高采样因子上的方法的适用性。
translated by 谷歌翻译
地球天气和气候的数值模拟需要大量的计算。这导致替换替换具有在推理时间快速的近似机器学习(ml)方法的子程序来替换的子程序感兴趣。在天气和气候模型中,大气辐射转移(RT)计算特别昂贵。这使他们成为了基于神经网络的仿真器的流行目标。然而,由于缺乏缺乏全面的数据集和ML基准测试的标准化最佳实践,事先工作难以比较。为了填补这个差距,我们建立一个大型数据集,比加拿大地球系统模型为基础的大型数据集,高于\ emph {1000万个样本,未来的气候条件}。 Climart为ML社区带来了几种方法论挑战,例如多次分发试验集,底层域物理学和准确性和推广速度之间的权衡。我们还提出了几种新颖的基线,这些基线表示现有工作中使用的数据集和网络架构的缺点。下载说明,基准和代码可提供:https://github.com/rolnicklab/climart
translated by 谷歌翻译
安全限制的单位承诺(SCUC)用于电力系统的日期前一代调度是一个混合整数的线性编程问题,该问题是计算密集的。良好的热启动解决方案或减少SCUC模型可以节省大量的时间。在这项工作中,提出了一种新的方法来有效地利用机器学习(ML)来提供良好的起始解决方案和/或降低SCUC的问题大小。使用历史节点需求配置文件和各自的承诺计划提出和培训使用逻辑回归算法的ML模型。处理并分析ML输出以辅助SCUC。拟议的方法是在几个标准测试系统上验证的,即IEEE 24-Bus系统,IEEE 73总线系统,IEEE 118总线系统,合成南卡罗来纳500公交系统,以及波兰2383总线系统。仿真结果表明,来自所提出的机器学习模型的预测可以提供良好的热启动解决方案和/或减少SCUC中的变量数量和限制,以及解决方案质量的最小损耗,同时大大减少计算时间。
translated by 谷歌翻译
Computer tomography (CT) have been routinely used for the diagnosis of lung diseases and recently, during the pandemic, for detecting the infectivity and severity of COVID-19 disease. One of the major concerns in using ma-chine learning (ML) approaches for automatic processing of CT scan images in clinical setting is that these methods are trained on limited and biased sub-sets of publicly available COVID-19 data. This has raised concerns regarding the generalizability of these models on external datasets, not seen by the model during training. To address some of these issues, in this work CT scan images from confirmed COVID-19 data obtained from one of the largest public repositories, COVIDx CT 2A were used for training and internal vali-dation of machine learning models. For the external validation we generated Indian-COVID-19 CT dataset, an open-source repository containing 3D CT volumes and 12096 chest CT images from 288 COVID-19 patients from In-dia. Comparative performance evaluation of four state-of-the-art machine learning models, viz., a lightweight convolutional neural network (CNN), and three other CNN based deep learning (DL) models such as VGG-16, ResNet-50 and Inception-v3 in classifying CT images into three classes, viz., normal, non-covid pneumonia, and COVID-19 is carried out on these two datasets. Our analysis showed that the performance of all the models is comparable on the hold-out COVIDx CT 2A test set with 90% - 99% accuracies (96% for CNN), while on the external Indian-COVID-19 CT dataset a drop in the performance is observed for all the models (8% - 19%). The traditional ma-chine learning model, CNN performed the best on the external dataset (accu-racy 88%) in comparison to the deep learning models, indicating that a light-weight CNN is better generalizable on unseen data. The data and code are made available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
Real-world datasets exhibit imbalances of varying types and degrees. Several techniques based on re-weighting and margin adjustment of loss are often used to enhance the performance of neural networks, particularly on minority classes. In this work, we analyze the class-imbalanced learning problem by examining the loss landscape of neural networks trained with re-weighting and margin-based techniques. Specifically, we examine the spectral density of Hessian of class-wise loss, through which we observe that the network weights converge to a saddle point in the loss landscapes of minority classes. Following this observation, we also find that optimization methods designed to escape from saddle points can be effectively used to improve generalization on minority classes. We further theoretically and empirically demonstrate that Sharpness-Aware Minimization (SAM), a recent technique that encourages convergence to a flat minima, can be effectively used to escape saddle points for minority classes. Using SAM results in a 6.2\% increase in accuracy on the minority classes over the state-of-the-art Vector Scaling Loss, leading to an overall average increase of 4\% across imbalanced datasets. The code is available at: https://github.com/val-iisc/Saddle-LongTail.
translated by 谷歌翻译
Semantic segmentation works on the computer vision algorithm for assigning each pixel of an image into a class. The task of semantic segmentation should be performed with both accuracy and efficiency. Most of the existing deep FCNs yield to heavy computations and these networks are very power hungry, unsuitable for real-time applications on portable devices. This project analyzes current semantic segmentation models to explore the feasibility of applying these models for emergency response during catastrophic events. We compare the performance of real-time semantic segmentation models with non-real-time counterparts constrained by aerial images under oppositional settings. Furthermore, we train several models on the Flood-Net dataset, containing UAV images captured after Hurricane Harvey, and benchmark their execution on special classes such as flooded buildings vs. non-flooded buildings or flooded roads vs. non-flooded roads. In this project, we developed a real-time UNet based model and deployed that network on Jetson AGX Xavier module.
translated by 谷歌翻译
The problem of generating an optimal coalition structure for a given coalition game of rational agents is to find a partition that maximizes their social welfare and is known to be NP-hard. This paper proposes GCS-Q, a novel quantum-supported solution for Induced Subgraph Games (ISGs) in coalition structure generation. GCS-Q starts by considering the grand coalition as initial coalition structure and proceeds by iteratively splitting the coalitions into two nonempty subsets to obtain a coalition structure with a higher coalition value. In particular, given an $n$-agent ISG, the GCS-Q solves the optimal split problem $\mathcal{O} (n)$ times using a quantum annealing device, exploring $\mathcal{O}(2^n)$ partitions at each step. We show that GCS-Q outperforms the currently best classical solvers with its runtime in the order of $n^2$ and an expected worst-case approximation ratio of $93\%$ on standard benchmark datasets.
translated by 谷歌翻译
Code generation models have achieved impressive performance. However, they tend to be brittle as slight edits to a prompt could lead to very different generations; these robustness properties, critical for user experience when deployed in real-life applications, are not well understood. Most existing works on robustness in text or code tasks have focused on classification, while robustness in generation tasks is an uncharted area and to date there is no comprehensive benchmark for robustness in code generation. In this paper, we propose ReCode, a comprehensive robustness evaluation benchmark for code generation models. We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format. They are carefully designed to be natural in real-life coding practice, preserve the original semantic meaning, and thus provide multifaceted assessments of a model's robustness performance. With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt. In addition, we define robustness metrics for code generation models considering the worst-case behavior under each type of perturbation, taking advantage of the fact that executing the generated code can serve as objective evaluation. We demonstrate ReCode on SOTA models using HumanEval, MBPP, as well as function completion tasks derived from them. Interesting observations include: better robustness for CodeGen over InCoder and GPT-J; models are most sensitive to syntax perturbations; more challenging robustness evaluation on MBPP over HumanEval.
translated by 谷歌翻译
While pre-trained language models (LM) for code have achieved great success in code completion, they generate code conditioned only on the contents within the file, i.e., in-file context, but ignore the rich semantics in other files within the same project, i.e., cross-file context, a critical source of information that is especially useful in modern modular software development. Such overlooking constrains code language models' capacity in code completion, leading to unexpected behaviors such as generating hallucinated class member functions or function calls with unexpected arguments. In this work, we develop a cross-file context finder tool, CCFINDER, that effectively locates and retrieves the most relevant cross-file context. We propose CoCoMIC, a framework that incorporates cross-file context to learn the in-file and cross-file context jointly on top of pretrained code LMs. CoCoMIC successfully improves the existing code LM with a 19.30% relative increase in exact match and a 15.41% relative increase in identifier matching for code completion when the cross-file context is provided.
translated by 谷歌翻译